Texas Success Initiative (TSI)

MATH REVIEW

Algebra Review

ALGEBRA & FUNCTIONS

Variables and Algebraic Expressions

• The sum of a number and 5 means:

```
m + 5 \text{ or } 5 + m
```

• The number diminished or subtracted by 7 means:

m-7

Ten times a number means:

10m

• z divided by 3 means:

z / 3

Algebraic Expressions

- Key words which denotes addition
 - sum, plus, greater than, more than, larger than, rise, increase, gain
- Key words which denotes subtraction
 - Ifference, minus, less than, smaller than, fewer than, decrease, drop, reduce, diminish, lose
- Key words which denotes multiplication
 - > multiplied by, times, product, twice
- Key words which denotes division
 - quotient, divided by, ratio, half

Solving Equations

Examples:

• If 3t - 7 = 5t, then 6t = ?Solve for t; then find 6t 3t - 5t = 7- 2t = 7t = -(7 / 2)Thus, 6t = 6(-7/2) = -21

Solving Equations

Examples:

• If
$$(x-1)/x = 20$$
, then $x = ?$
 $x-1 = 20x$
 $x-20x = 1$
 $-19x = 1;$
thus $x = -1/19$

Ratios & Proportions

- Ratio is a way of comparing two or more variables.
- It is written as a:b or a/b
- Proportions are written as two ratios in terms of fractions equal to each other.

Ex Solve this proportion for s:

p is to q as s is to t p/q = s/ts = t(p/q)

Solving Equations

Examples:

Variables x and y are directly proportional, and y=2 when x=3. What is the value of y when x=9?

 $y \propto x \rightarrow y = kx$ where k is a constant 2 = k(3); k= 2/3 \rightarrow y=(2/3)x

Now, we can substitute x=9 and find y:

y = (2/3) 9 = 6

Solving Equations

Word Problem:

• A group of people ordered soup and sandwiches for lunch. Each person in the group had either one soup or one sandwich. The sandwiches cost \$7.75 each and the soups cost \$4.50 each. If the total cost of all 18 lunches was \$113.50, how many sandwiches were ordered?

 $A + B = 18 \rightarrow A = 18 - B$ 4.50 A + 7.75 B = 113.50 4.50 (18 - B) + 7.75 B = 113.50 3.25 B = 32.5 B = 10

Solving for Two Unknown Systems of Equations

• Solve for x and y:

$$4x + 4y = 12 \rightarrow Eq. 1$$

$$\underline{2x + 3y = 7 \rightarrow Eq. 2}$$

$$(Eq. 2) X 2: \quad 4x + 6y = 14 \rightarrow Eq. 3$$

$$(Eq. 3- Eq. 1): \quad 2y = 2$$

$$y = 1$$
Substitute y=1 into Eq. 2:
$$2x + 3(1) = 7$$

$$2x = 4$$

$$x = 2$$

Monomials

Algebraic expression that consists of only one term. (Ex: 9y, X^{12} , 2qst²)

Adding & Subtracting Monomials

Follow the same rules as with signed numbers, provided that the terms are alike. You should add and subtract the coefficients only and leave the variables the same.

$$10 \mathbf{x}^3 \mathbf{y} \mathbf{z} - 12 \mathbf{x}^3 \mathbf{y} \mathbf{z} = -2 \mathbf{x}^3 \mathbf{y} \mathbf{z}$$

Monomials

Multiplying Monomials

Add the exponents of the same bases
Example: (x²)(x³) = x⁵

When monomials are raised to the power, multiply the exponents of each part of the monomial by the power to which it is being raised.

Example: $(3x^2y^3)^3 = 27x^6y^9$

Monomials

Dividing Monomials

Subtract the exponent of the divisor (denominator) from the exponent of the dividend (numerator) of the same base.

Examples:

 $(x^{12})/(x^2) \equiv x^{10}$ $(x^6y^3)/(x^2y) \equiv x^4y^2$

Polynomials

Algebraic expression that consists of two or more terms. $(Ex: x^2 + y^2 + 9y)$

Adding & Subtracting Polynomials

Add or subtract like terms. You should add and subtract the coefficients of like terms and leave the variables the same.

 $10 x^{3}yz + 2xy - 12 x^{3}yz + 3xy = -2 x^{3}yz + 5xy$

Polynomials

Multiplying Polynomials

Multiply each term in one polynomial by each term in the other polynomial. Then simplify if needed.

Example: $(p+q)(p+q+r) = p^2+pr+2pq+q^2+qr$

Dividing Polynomials by Monomials

> Divide each term in the polynomial by the monomial. Example: $(6y^2+2y)/(2y) = 3y + 1$

Polynomials

Solving quadratic equations

Examples: Factor $x^2 + 2x - 3 = 0$

Solving Equations

Examples:

• $x^{4}-1=?$ $x^{2}-y^{2} = (x-y)(x+y)$ $x^{4}-1 = (x^{2}-1)(x^{2}+1)$ $= (x-1)(x+1)(x^{2}+1)$ • If $\sqrt{(5-x)} = 4$, then x = ? $5-x = 4^{2}$ -x = 11x = -11

Linear Equation

• Equation of a straight line can be defined by the equation:

y = mx + c;

where m is the slope of the line and c is the

y-intercept in the xy-plane.

Linear Equation

Examples:

Point C has coordinates (6,9). What is the equation of the line that contains points O and C? y=mx+c; slope,m = (y₂-y₁)/(x₂-x₁) = (9-0) /(6-0) = 3/2 y-intercept, c = 0 Thus, y = 3/2 x

X, Y Intercepts

Examples:

In the xy-plane, what is the y-intercept of the graph of the equation y=2(x+3)(x-4)?

y-intercept means x=0

Thus, substitute x=0 in the equation to find the y-intercept; y=2(0+3)(0-4)y = -24

Solving Inequalities

Treat them exactly like equations (except, if you multiply or divide both sides by a negative number, you must reverse the direction of the inequality).

 $Ex:-3x + 5 \le 11$

 $-3x \le 11 - 5$ $-3x \le 6$ $x \ge -2$

Geometry and Measurement

Plane Geometry

• Shapes that can be drawn on a paper

Angles

• Angle is formed by two rays that have the same endpoint called a vertex

Pairs of Angles

- Adjacent Angles are angles that share a common vertex and side
- Complementary Angles are adjacent angles together measure 90°
- Supplementary Angles are adjacent angles that together measure 180°

Adjacent angles

Complementary Angles

Supplementary Angles

• Vertical Angles are opposite angles that share a common vertex

Types of Lines

- Intersecting Lines are two or more lines that meet at a point
- Perpendicular Lines Two lines that meet to form right angles
- Parallel Lines are two or more lines that remain the same distance apart. They never meet

Angles and Lines

• Example

line m and line n are parallel. Fill in the missing adjacent angles.

Measurements

PERIMETER

AREA example

The yard behind Cindy's house is rectangular in shape and has a perimeter of 72 feet. If the length ℓ of the yard is 18 feet longer than the width ω of the yard, what is the area of the yard in square feet?

• 3 dimensional (width, depth, and height)

3D Measurements

SURFACE AREA Total area of all the surfaces of a solid Surface area of a cube 5 feet = 5 feet X 5 feet X 6 surfaces = 150 feet squared 5 feet 5 feet

VOLUME

The total amount of 3D space a solid occupies Volume of a cube = 5 feet X 5 feet X 5 feet = 125 feet cubed

3D Measurements

Transformations

- *Rotation* means moving a shape around a point or line
- *Reflection* means reflected shape is same distance from a mirror line
- *Translation* means every point in shape must move in the same direction and distance

Which of the following figures has been rotated 90° clockwise about the origin?

Which of the following figures show parallelogram WXYZ being carried onto its image W'X'Y'Z' by a reflection across the x-axis?

Data Analysis, Statistics and Probability

Statistical Measures

• Mean (Average) = sum of group of numbers divided by the number of them

$$\frac{2+2+6+10+15}{5} = 35 \div 5 = 7$$

• **Median** is the middle number in a group of numbers listed in *ascending* or *descending* order

2, 2, 6, 10, 15

if there is an even number of items in the group, the median is the average of the middle two numbers

2, 2, 6, 10, 15, 20 6 + 10 = 16 16/2 = **8**

- Mode is the number(s) that occurs most frequently
 2, 2, 6, 10, 15
- **Range** is the spread of the data. Range is found by taking the difference of the maximum and minimum values in the group.

2, 2, 6, 10, 15

maximum = 15 and minimum = 2

range = 15 - 2 = 13

Statistical Measures

• Example

The table below shows the high temperature last Thursday for five cities, *A* through *E*. If the **median** of the Thursday high temperatures for these cities was 81°F, which of the following could **NOT** have been the high temperature last Thursday for City *A*?

Data Analysis

- Data is often interpreted visually through graphs
- Examine the entire graph notice labels and headings
- Look for changes high points, low points, trends
- Some common graphs: line, bar, pie graph, pictograph, stem-and leaf plot, box-and-whisker plot, scatter plot

Data Analysis

• Example of box-and-whisker plot

A basketball team played 11 games The number of points earned in each game : 23, 25, 27, 29, 30, 34, 38, 40, 41, 42, 45

Median = 34

Lower quartile is the median of the lower half of a data set = 27

Upper quartile is the median of the upper half of a data set = 41

Interquartile range = upper quartile – lower quartile = 41 - 27 = 15

• How likely an event may happen

Probability of an event happening = Number of possible ways it can happen

Total of possible ways

Probability is always between 0 and 1

Impossible	Unlikely	Even Chance	Likely	Certain
0				1

• Tossing a Coin

Possible outcomes is Heads or Tails Can be only one or other at a given time = 1 Total number of possible outcomes is 2 Probability of coin landing on Heads = $\frac{1}{2}$ Probability of coin landing on Tails = $\frac{1}{2}$

• Throwing Dice

Possible outcomes is 1, 2, 3, 4, 5, or 6 Can be only one of six at a given time = 1 Total number of possible outcomes is 6 Probability of dice landing on a 1 = 1/6

Spinner

Possible outcomes is 1, 2, 3, 4, 5, 6, 7, or 8

Total number of outcomes is 8

Can be only one or other at a given time = 1

Example

Using the spinner what is probability of spinning either a 5 or a 6

Possible outcome/total outcome

Spinning a 5 = 1/8Spinning a 6 = 1/8Spinning a 5 or a 6 = 1/8 + 1/8 = 1/4

When two events are independent of each other, you **ADD** to find the possible outcome of **either** event occurring and you **MULTIPLY** to find the possible outcome of **both** events occurring.

Example

There are 20 children in the cast of a class play, and 8 of the children are boys. Of the boys, 4 have a speaking part in the play, and of the girls, 8 do not have a speaking part in the play. If a child from the cast of the play is chosen at random, what is the probability that the child has a speaking part?

				create a table with
Children	Speaking	Non-	Totals 🤇	the separate
		speaking		categories
Boys	4	8 - 4 = 4	8	Fill in the known
Girls	12 - 8 = 4	8	20 - 8 = 12	information. Calculate
Totals	4 + 4 = 8	4 + 8 = 12	20	unknown

Probability choosing a child with speaking part = number of children with speaking parts

total number of children in the play

$$= 2/5$$

Sources

- Math Review for Standardized Tests
- www.mathisfun.com
- <u>www.shmoop.com</u>
- www.testpreview.com
- The College Board
- www.physicstutors.com