Calculator Handbook

by

David Miller

j.david.miller@nhmccd.edu
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sections</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Buttons on the Calculator</td>
<td>>Frac, Adjusting Window, Zooms, Entry, Resetting the Calculator, TblSet, Format, Split Screen, Ans</td>
<td>3</td>
</tr>
<tr>
<td>Checking inequalities with "tests"</td>
<td>2.7,9.1</td>
<td>4</td>
</tr>
<tr>
<td>Checking ordered pairs in equations</td>
<td>3.1</td>
<td>4-5</td>
</tr>
<tr>
<td>Checking simplify problems using the table</td>
<td>2.1,5.2,5.3,5.5,5.6,7.1,7.2,7.3,7.4,7.7,10.4,10.5</td>
<td>5-6</td>
</tr>
<tr>
<td>Checking solve problems on HomeScreen</td>
<td>2.2,2.3</td>
<td>6</td>
</tr>
<tr>
<td>Checking solve problems using the Intersection Method</td>
<td>2.2,2.3</td>
<td>7-8</td>
</tr>
<tr>
<td>Complex Numbers, Evaluate</td>
<td>10.7</td>
<td>8-9</td>
</tr>
<tr>
<td>Evaluate functions using the table</td>
<td>3.7,7.1,10.1</td>
<td>9-10</td>
</tr>
<tr>
<td>Evaluating Complex Numbers</td>
<td>10.7</td>
<td>8-9</td>
</tr>
<tr>
<td>Factoring with the box, finding the missing terms</td>
<td>6.2,6.3,6.4</td>
<td>22</td>
</tr>
<tr>
<td>Find the equation given 2 points</td>
<td>3.6,8.1</td>
<td>10-11</td>
</tr>
<tr>
<td>Find the slope given 2 points</td>
<td>3.4</td>
<td>11-12</td>
</tr>
<tr>
<td>Finding x- and y-intercepts</td>
<td>3.3</td>
<td>12-14</td>
</tr>
<tr>
<td>Functions, evaluate using the table</td>
<td>3.7,7.1,10.1</td>
<td>9-10</td>
</tr>
<tr>
<td>Graphing inequalities</td>
<td>9.4</td>
<td>15</td>
</tr>
<tr>
<td>Graphing lines</td>
<td>3.2,3.5,8.1</td>
<td>16</td>
</tr>
<tr>
<td>Graphing nonlinear functions</td>
<td>8.2</td>
<td>17</td>
</tr>
<tr>
<td>Higher order roots</td>
<td>10.1</td>
<td>18</td>
</tr>
<tr>
<td>Inequalities, checking with "tests"</td>
<td>2.7,9.1</td>
<td>3</td>
</tr>
<tr>
<td>Inequalities, graphing</td>
<td>9.4</td>
<td>15</td>
</tr>
<tr>
<td>Intersection, to find the solution to an equation</td>
<td>2.2,2.3,6.5,7.5,7.6,10.6,11.1,11.2,11.3</td>
<td>7-8</td>
</tr>
<tr>
<td>Lines, graphing</td>
<td>3.2,3.5,8.1</td>
<td>16</td>
</tr>
<tr>
<td>Nonlinear Functions, graphing</td>
<td>8.2</td>
<td>17</td>
</tr>
<tr>
<td>Ordered pairs, plotting</td>
<td>3.1,3.7</td>
<td>18-20</td>
</tr>
<tr>
<td>Plotting ordered pairs</td>
<td>3.1,3.7</td>
<td>18-20</td>
</tr>
<tr>
<td>Roots, Higher Order</td>
<td>10.1</td>
<td>19</td>
</tr>
<tr>
<td>Simplify, checking using the table</td>
<td>2.1,5.2,5.3,5.5,5.6,7.1,7.2,7.3,7.4,7.7,10.4,10.5</td>
<td>5-6</td>
</tr>
<tr>
<td>Slope, find given 2 points</td>
<td>3.4</td>
<td>11-12</td>
</tr>
<tr>
<td>Slope-Intercept Form given 2 points</td>
<td>3.6,8.1</td>
<td>10-11</td>
</tr>
<tr>
<td>Solve, checking problems on HomeScreen</td>
<td>2.2,2.3</td>
<td>6</td>
</tr>
<tr>
<td>Solving Solve problems with intersection</td>
<td>2.2,2.3,6.5,7.5,7.6,10.6,11.1,11.2,11.3</td>
<td>7-8</td>
</tr>
<tr>
<td>Solving Systems by graphing</td>
<td>4.1,4.5</td>
<td>21</td>
</tr>
<tr>
<td>Systems of Equations, solve by graphing</td>
<td>4.1,4.5</td>
<td>21</td>
</tr>
<tr>
<td>Using y= to help factor with the box</td>
<td>6.2,6.3,6.4</td>
<td>22</td>
</tr>
<tr>
<td>x-intercept, finding</td>
<td>3.3</td>
<td>12-13</td>
</tr>
<tr>
<td>y-intercept, finding</td>
<td>3.3</td>
<td>14</td>
</tr>
</tbody>
</table>
Calculator Handbook

Basic Buttons

<table>
<thead>
<tr>
<th>Function</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Button:</td>
<td></td>
</tr>
<tr>
<td>• The last answer displayed is stored in memory as “Ans.”</td>
<td>Push 2nd (−)</td>
</tr>
<tr>
<td>Clear Memory:</td>
<td></td>
</tr>
<tr>
<td>• Clears the calculator memory. It will erase all programs, applications, and anything stored in memory.</td>
<td>Push 2nd + 7</td>
</tr>
<tr>
<td>Display as a Fraction:</td>
<td></td>
</tr>
<tr>
<td>• The calculator will display any rational decimal as a fraction.</td>
<td>Push MATH ENTER ENTER</td>
</tr>
<tr>
<td>Entry:</td>
<td></td>
</tr>
<tr>
<td>• Repreates the last entry line into calculator. Will return the last 30 entries if done repeatedly.</td>
<td>Push 2nd ENTER</td>
</tr>
<tr>
<td>Graph/Table:</td>
<td></td>
</tr>
<tr>
<td>• Will split the screen vertically between the Graph and Table to display both.</td>
<td>Push MODE Enter</td>
</tr>
<tr>
<td>• Scroll down and push “G-T” on</td>
<td></td>
</tr>
<tr>
<td>Grid:</td>
<td></td>
</tr>
<tr>
<td>• Will put a grid on the graphing window.</td>
<td>Push 2nd ZOOM Enter</td>
</tr>
<tr>
<td>• Scroll down and push “GridOn” on</td>
<td></td>
</tr>
<tr>
<td>SplitScreen:</td>
<td></td>
</tr>
<tr>
<td>• Will split the screen horizontally between the Homescreen, Table, or Graph.</td>
<td>Push MODE Enter</td>
</tr>
<tr>
<td>• Scroll down and push “Horiz” on</td>
<td></td>
</tr>
</tbody>
</table>
Checking Inequalities with “Tests”

Example Problem:
Solve: \(x - 2 \geq 7 \)

Solution:
\(x \geq 9 \)

Checking the solution:
\(9 - 2 \geq 7 \)
\(7 \geq 7 \)
True

Calculator Steps:

- Push \(9 \), \(\text{STO} \), \(x,\theta,n \), \(\text{ENTER} \)
- Push \(x,\theta,n \), \(- \), \(2 \)
- Push \(\text{2nd} \), \(\text{MATH} \), \(4 \)
- Push \(7 \), \(\text{ENTER} \)

If the calculator displays “1,” then it is “true.”
If the calculator displays “0,” then it is “false.”

Checking Ordered Pairs in Equations

Example Problem:
Determine if \((2, -3)\) is a solution of \(x - 4y = 14 \).

Solution:
\((2) - 4(-3) = 14 \)
\(2 + 12 = 14 \)
\(14 = 14 \)
True
Checking “Simplify Problems” Using the Table

Example Problem:
Simplify $2(5x - 4) - 2$

Solution:
$10x - 10$

Calculator Steps:

- Push $\frac{2}{x}$ on the calculator
- Type the problem in Y_1
- Type the answer in Y_2
• Push \(\text{2nd} \) \(\text{GRAPH} \) to see the Table

\[
\begin{array}{|c|c|c|}
\hline
X & Y_1 & Y_2 \\
\hline
1 & 0 & 0 \\
2 & 10 & 10 \\
3 & 20 & 20 \\
4 & 30 & 30 \\
5 & 50 & 50 \\
6 & 50 & 50 \\
\hline
\end{array}
\]

\(X=1 \)

• If the two Y columns are the same, then the answer is correct.

Checking “Solve Problems” using the HomeScreen

Example Problem:
Solve: \(3x - 4 = 2x + 1 \)

Solution:
\[x = 5 \]

Calculator Steps:
• Store 5 to the calculator memory

\[
\begin{array}{|c|c|}
\hline
5 \to X & 5 \\
3X-4 & 11 \\
2X+1 & 11 \\
\hline
\end{array}
\]

• Push \(\text{5} \), \(\text{STO} \), \(\text{X,T,\theta,n} \), \(\text{ENTER} \)
• Push \(\text{3X}-4 \), \(\text{ENTER} \)
• Push \(\text{2X}+1 \), \(\text{ENTER} \)
• If the two answers match, then the answer is correct.
Checking “Solve Problems” using the Intersection Method

Example Problem:
Solve: \(x^2 = 4x + 5 \)

Solution:
\[x = -1, \ x = 5 \]

Calculator Steps:

- Push \(Y= \)
- Type the left side of the problem in \(Y_1 \)
- Type the right side of the problem in \(Y_2 \)

You have to see the graphs cross to get the answer!

- Push \(\text{ZOOM} \)

- Adjust Window if needed
- Push \(\text{2nd \ Trace \ 5} \)

- If there’s more than one answer repeat the last step, but before pressing the third time use the left/right arrow keys to move the cursor close to the other answer and then push \(\text{Enter} \) the third time.

- The screen will say “Intersection” and below that it will say “X=” and the answer will be displayed.

Evaluating Complex Numbers

Sample Problem:

Write \(\frac{3 + 5i}{1 + i} \) in the form “a + bi”

Solution:

\(4 + i \)
Calculator Steps:
Put calculator into Imaginary Mode

- Push **MODE**
- Scroll down and push **** on “a + bi”

Evaluate Functions using the Table

Example Problem:
Given $f(x) = x^2 - 3x + 2$, find $f(-3)$.

Solution:
$f(-3) = 20$
Calculator Steps:

- Push, \[\text{Y} = \text{X,T,\theta,n} \]
 \[x^2 \]
 \[-3 \]
 \[\text{X,T,\theta,n} \]
 \[+2 \]
 \[\text{ENTER} \]

- Push
- Scroll up or down until you find the appropriate x-value.

The value in the \(Y_i \) column will be the answer

Finding the Equation Given Two Points

Example Problem:
Find the slope given the points \((1,5),(3,1)\)

Solution:
Equation: \(y = -2x + 7 \)
Calculator Steps:

- Push
- Type in the ordered pairs (x’s in \(L_1 \), y’s in \(L_2 \))

- Push

“a” is the coefficient and “b” is the constant.

Finding the Slope Given Two Points

Example Problem:

Find the slope given the points \((1,5),(3,1)\)

Solution:

Slope = -2
Calculator Steps:

- Push STAT ENTER
- Type in the ordered pairs (x’s in L₁, y’s in L₂)

```
<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

LinReg

\[y = ax + b \]

\[a = -2 \]

\[b = 7 \]

“a” is the slope.

Finding x-intercepts

Example Problem:

Find the x-intercepts for \(y = x^2 + 2x - 3 \)

Solution:

\((-3,0), (1,0)\)

Calculator Steps:

- Push \(Y= \) X,T,\(\theta \),n \(x^2 \) 2 X,T,\(\theta \),n - 3 ENTER
- Push 0 ENTER
• Push \(\text{GRAPH} \)

• You need to see all the x-intercepts on the graph to be able to find them.

• (Adjusting the Window might be needed.)

• Push, \(\text{2nd TRACE 5} \), \(\text{ENTER ENTER ENTER} \)

• To find the second x-intercept Push \(\text{2nd TRACE 5} \), \(\text{ENTER ENTER ENTER} \)

• Before pushing a 3\(^{rd}\) time push the arrows to the left or right to move the cursor close to the other x-intercept and then push \(\text{ENTER} \) the third time.

The screen will say Intersection and display the x- and y-coordinates.
Finding y-intercepts

Sample Problem:
Find the y-intercept for \(y = x^2 + 2x - 3 \)

Solution:
\((0, -3)\)

Calculator Steps:

- Push \(Y= \), \(2 \), \(X,T,\theta,n \), \(x^2 \), \(-3 \), \(\text{ENTER} \)

- Push \(\text{2nd} \), \(\text{GRAPH} \)
- Scroll up/down using the arrows to the y-intercept
Graphing Inequalities

Sample Problem:
Graph the solution of the system of linear inequalities:
\[y < 3x - 4 \]
\[y \leq x + 2 \]

Solution:

Calculator Steps:

- Push \[\text{Y=} \]
- Push \[3 \]
- Push \[x,T,\theta,n \]
- Push \[- \]
- Push \[4 \]
- Push \[\text{ENTER} \]
- Push \[x,T,\theta,n \]
- Push \[+ \]
- Push \[2 \]
- Push \[\text{ENTER} \]
- Move the cursor to the left of \(Y_1 \) and push \[\text{ENTER} \] 3 times.
- Move the cursor to the left of \(Y_2 \) and push \[\text{ENTER} \] 3 times.
- Push \[\text{GRAPH} \]
Graphing Lines

Example Problem:
Graph \(y = 3x - 2 \)

Solution:

Calculator Steps:

- Push
 - \(Y = \)
 - \(3 \)
 - \(X,T,\theta,n \)
 - \(-\)
 - \(2 \)
 - \(\text{ENTER} \)

- Push \(\text{GRAPH} \)
Graphing Non-Linear Equations

- Graph $y = x^3 - 3$
- Push Y=, X,T,Θ,n, X^2
- Push 3, ENTER
- Push GRAPH

- Graph $y = |x - 2|$.
- Push Y=, 2nd, 0
- Push ENTER, X,T,Θ,n, $-$, 2,), ENTER
- Push GRAPH

- Graph $y = x^3$
- Push Y=, X,T,Θ,n, \wedge
- Push 3, ENTER
- Push GRAPH
Higher Order Roots

Sample Problem:
Evaluate $\sqrt[3]{\frac{27}{64}}$

Solution:
$$\frac{3}{4}$$

Calculator Steps:

- Push $\boxed{3}$, MATH, $\boxed{5}$
 $\boxed{(}$, $\boxed{2}$, $\boxed{7}$, $\boxed{)}$, ENTER
- Push MATH, ENTER, ENTER

Plotting Ordered Pairs

Example Problem:
Plot: $(1,5), (3,1)$

Solution:
Calculator Steps:

- Push \(\text{STAT} \) \(\text{ENTER} \)

- Type in the ordered pairs (x’s in \(L_1 \) and y’s in \(L_2 \))

- Push \(\text{2nd} \) \(\text{Y=} \) \(\text{ENTER} \)
 - Select the options as pictured by using the arrows and the button.

- Push \(\text{WINDOW} \)
 - Select a Window that will display the ordered pairs.
Scientific Notation

Sample Problem:
Write $45,000,000,000$ in scientific notation.

Solution:

$$4.5 \times 10^{10}$$

Calculator Steps:
Put calculator in Scientific Mode

- Push

- Scroll right and push on “Sci”

- Push

- Push 45000000000,

- Push ENTER
Solving Systems by Graphing

Example Problem:
Given \(y = x + 1 \) and \(y = 2x - 1 \), find the solution to the system of equations.

Solution:
\((2,3)\)

Calculator Steps:

1. Push \(Y= \)
2. Push \(1 \) \(\text{ENTER} \)
3. Push \(2 \) \(\text{ ENTER} \)
4. Push \(\text{GRAPH} \)
5. You have to see the intersection on the graph to get the answer.
6. Push \(\text{2nd} \) \(\text{TRACE} \) \(5 \)
7. The ordered pair will be stated on the screen.
Using Y= to Help with Factoring using Grouping or the Box

Sample Problem:
Factor \(3x^2 + 13x - 10 \)

Solution:
\[(3x - 2)(x + 5)\]

Calculator Steps:
Goal: To find 2 numbers that have a product of -30 and a sum of 13.

1. Push, \(\text{Y=}, (\text{-}), 3 \)
2. Push \(\text{0}, \div, X,T,\theta,n, \text{ENTER} \)
3. Push \(\text{2nd}, \text{GRAPH} \)
4. Scroll up and down the table until you find 2 numbers that total 13.

These are the numbers needed to factor by grouping or to use the box.